Computational scheme for pH‐dependent binding free energy calculation with explicit solvent

نویسندگان

  • Juyong Lee
  • Benjamin T Miller
  • Bernard R Brooks
چکیده

We present a computational scheme to compute the pH-dependence of binding free energy with explicit solvent. Despite the importance of pH, the effect of pH has been generally neglected in binding free energy calculations because of a lack of accurate methods to model it. To address this limitation, we use a constant-pH methodology to obtain a true ensemble of multiple protonation states of a titratable system at a given pH and analyze the ensemble using the Bennett acceptance ratio (BAR) method. The constant pH method is based on the combination of enveloping distribution sampling (EDS) with the Hamiltonian replica exchange method (HREM), which yields an accurate semi-grand canonical ensemble of a titratable system. By considering the free energy change of constraining multiple protonation states to a single state or releasing a single protonation state to multiple states, the pH dependent binding free energy profile can be obtained. We perform benchmark simulations of a host-guest system: cucurbit[7]uril (CB[7]) and benzimidazole (BZ). BZ experiences a large pKa shift upon complex formation. The pH-dependent binding free energy profiles of the benchmark system are obtained with three different long-range interaction calculation schemes: a cutoff, the particle mesh Ewald (PME), and the isotropic periodic sum (IPS) method. Our scheme captures the pH-dependent behavior of binding free energy successfully. Absolute binding free energy values obtained with the PME and IPS methods are consistent, while cutoff method results are off by 2 kcal mol(-1) . We also discuss the characteristics of three long-range interaction calculation methods for constant-pH simulations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Calculations of pH-dependent binding of proteins to biological membranes.

Binding of proteins to membranes is often accompanied by titration of ionizable residues and is, therefore, dependent on pH. We present a theoretical treatment and computational approach for predicting absolute, pH-dependent membrane binding free energies. The standard free energy of binding, DeltaG, is defined as -RTln(P(b)/P(f)), where P(b) and P(f) are the amounts of bound and free protein. ...

متن کامل

Solvent models for protein-ligand binding: Comparison of implicit solvent poisson and surface generalized born models with explicit solvent simulations

Solvent effects play a crucial role in mediating the interactions between proteins and their ligands. Implicit solvent models offer some advantages for modeling these interactions, but they have not been parameterized on such complex problems, and therefore, it is not clear how reliable they are. We have studied the binding of an octapeptide ligand to the murine MHC class I protein using both e...

متن کامل

Connecting free energy surfaces in implicit and explicit solvent: an efficient method to compute conformational and solvation free energies.

The ability to accurately model solvent effects on free energy surfaces is important for understanding many biophysical processes including protein folding and misfolding, allosteric transitions, and protein–ligand binding. Although all-atom simulations in explicit solvent can provide an accurate model for biomolecules in solution, explicit solvent simulations are hampered by the slow equilibra...

متن کامل

Influence of the solvent representation on vibrational entropy calculations: Generalized born versus distance-dependent dielectric model

The harmonic model is the most popular approximation for estimating the "configurational" entropy of a solute in molecular mechanics/Poisson-Boltzmann solvent accessible surface area (MM/PBSA)-type binding free energy calculations. Here, we investigate the influence of the solvent representation in the harmonic model by comparing estimates of changes in the vibrational entropies for 30 trypsin/...

متن کامل

An Efficient Implementation of Phase Field Method with Explicit Time Integration

The phase field method integrates the Griffith theory and damage mechanics approach to predict crack initiation, propagation, and branching within one framework. No crack tracking topology is needed, and complex crack shapes can be captures without user intervention. In this paper, a detailed description of how the phase field method is implemented with explicit dynamics into LS-DYNA is provide...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 25  شماره 

صفحات  -

تاریخ انتشار 2016